S ep 2 00 8 Singularities of the Prym Theta Divisor Sebastian

نویسنده

  • Sebastian Casalaina-Martin
چکیده

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric interpretation of the singularities of the theta divisor in terms of special linear series on the curve. This paper proves an analogous theorem for Prym varieties. Applications of this theorem to cubic threefolds, and Prym varieties of dimension five, are also considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 1 M ay 2 00 4 Singularities of the Prym Theta Divisor

For the Jacobian of a curve, the Riemann singularity theorem gives a geometric interpretation of the singularities of the theta divisor in terms of special linear series on the curve. This paper proves an analogous theorem for Prym varieties. Applications of this theorem to cubic threefolds, and Prym varieties of dimension five, are also considered.

متن کامل

The Curve of “prym Canonical” Gauss Divisors on a Prym Theta Divisor

Introduction: A good understanding of the geometry of a theta divisor Θ of a principally polarized abelian variety (A,Θ) requires a knowledge of properties of its canonical linear system, the Gauss linear system |OΘ(Θ)|. A striking feature of the theta divisor Θ(C) of the Jacobian of a curve C is that the dual of the branch divisor of the associated Gauss map γΘ on Θ, is not a hypersurface as e...

متن کامل

Prym varieties and the Schottky problem for cubic threefolds

A theorem of Mumford’s states that for a smooth cubic threefold X, the intermediate Jacobian JX is a principally polarized abelian variety of dimension 5 whose theta divisor has a unique singular point, which has multiplicity three. This talk describes joint work with R. Friedman, in which we prove a converse: if A is a principally polarized abelian variety of dimension 5 whose theta divisor ha...

متن کامل

The Tangent Cones at Double points of Prym-Canonical Divisors of Curves of genus 7

Let η be a line bundle on a smooth curve X with η^2=0 such that π_η, the double covering induced by η is an etale morphism. Assume also that X_η be the Prym-canonical model of X associated to K_X.η and Q is a rank 4 quadric containing X_η. After stablishing the projective normality of the prym-canonical models of curves X with Clifford index 2, we obtain in this paper a sufficient condition for...

متن کامل

The Primitive Cohomology of the Theta Divisor of an Abelian Fivefold

The primitive cohomology of the theta divisor of a principally polarized abelian variety of dimension g contains a Hodge structure of level g− 3 which we call the primal cohomology. The Hodge conjecture predicts that this is contained in the image, under the Abel-Jacobi map, of the cohomology of a family of curves in the theta divisor. In this paper we use the Prym map to show that this version...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008